
Precise and Efficient Static Array Bound Checking for
Large Embedded c Programs

Arnaud Venet
Kestrel Technology

NASA Arnes Research Center
Moffett Field, CA 94035

arnaud @email.arc.nasa.gov

ABSTRACT
In this paper we describe the desi,gn and implementation
of a static array-bound checker for a family of embedded
programs: the flight control s o h a r e of recent Mars mis-
sions. These codes are large (up to 250 KLOC), pointer
intensive, heavily multithreaded and written in an object-
oriented style, which m k e s their analysis very challenging.
We designed a tool called C Global Surveyor (C G S) that
can analyze the largest code in a couple of hours with a pre-
cision of 80%. The scalability and precision of the analyzer
are achieved by using an incremental framework in which
a pointer analysis and a numerical analysis of array indices
mutualiy refine each other. CGS has been designed so that
it can distribute the analysis over several processors in a
cluster of machines. To the best of our knowledge this is
the first distributed hplementation of static analysis dge-
rithms. Throughout the paper we will discuss the scalability
setbacks that we encountered during the construction of the
tool and their impact on the initial design decisions.

Categories and Subject. Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages-Program iinalysis

General Term
Algorithms, Languages. Verification

Kedmor&
.4bstract interpretation, program verification, pointer anal-
ysis, array-bound checking, difference-bound matrices

1. INTRODUCTION
It is well-known that runtime errors plague the develop-

ment of large mission-critical software. In 1996, the euplo-
sion of -4riane 501 shortly after launch was due to an over-
flow in an arithmetic conversion. This failure cost over 5500

Permission to make d i g i d or hard copies of alI or part of th is work for
personal or classroom use is ,pnted without fee provided that copies are
not made or dismbuted for profit or commercial advantage and that copies
b w rhis notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or 9 fee.
PLDI'W, June 9-1 1,2004. Washingon, DC, USA.
CGpynght 2 x 4 .;c:vi l-js: ;?-8O?-ji@!,'CoO6 ... 155.30.

Guillaume Brat
Kestrel Technology

NASA Arnes Research Center
Moffett Field, CA 94035

brat@ email.arc.nasa.gov

millions to the European space program. Classical verifi-
cation techniques based on development process, code re-
viewing and testing were unable to detect t.hat defect. This
overflow could have been detected by employing static anal-
ysis techniques which can automatically inspect the text of a
program and check the safety of all operations. As a matter
of fact? the failure of Ariane 501 gave birth to a commercial
static analysis tool called PolySpace Ada Verii5er 1221. This
tool can perform precise static analysis of large Ada pro-
grams (over 1 MLOC) and find runtime errors. In previous
articles 151, we have reported OUT experience with C Veri-
fier (the C version of Ada Verifier) on real NASA software.
Unfortunately, we found that C Verifier does not scale as
well as its Ada counterpart. In short, we had to limit our
analysis to code pieces of 20 to 40 KLOC and we obtained
20% of warnings after 8 to 12 hours of analysis. This level
of performance was not enough to convince N-4SA software
developers to adopt the technology.

We analyzed the reasons for these limitations and we de-
cided to address them by prototyping our own static analysis
tool called C Global Surveyor (CGS). We believe that it is
exTi-erneiy hard to build a static analyzer t h a t works well
for any C programs. The precision of a static analysis tool
is measured in terms of the percentage of operations in the
program that can be decided as safe (or unsafe). Precision
is the main metric for judging the quality of a static ana-
lyzer. Therefore, designing a static analyzer for any type of
C programs forces the tool iinplementer to make tradeoffs
that sacrifice scalability. We extensively expeiieaced with
PolySpace C VeiSer G I ~ a -v-z-ietj; of NASA pias- a d we
observed that precision remained consistently around 80%.
However, there was a huge discrepancy between execution
times, from a couple of hours to days. Our driving philos-
ophy is that designing a tool for specific coding style and
software architecture allows us to make different tradeoffs
that optimize execution time for the software family we tar-
get.

Cousot et al. [3] used a similar approach to build a static
analyzer that is specialied for software developed by Airblis;
it can analyze 75.000 lines of C code without producing any
warnings. Our goal with CGS is not as ambitious. Whereas
the software analyzed in [3] is safety-critical, single-threaded
and uses a very restricted subset of C, we have to analyze
programs that are multithreaded and use the full power of
pointer arithmetic. Our main purpose is io achieve a level
of precision comparable to that of PolySpace C I-erifier with
much lower execution times, since in our case this is the de-

approximation of the heap H,J and we const.ruct a decreas-
ing sequence Ho 2 HI 3 . . . 3 H, of abstract heaps wish
respect to the refinement order. We can use the pointwise
extension of the narrowing of intervals to define a narrow-
ilig operation O-b-ei abstract heaps. We can then automate
this process, using the narrowing to enforce stabilization.
Automatic stabilization is not implemented in the current
version of CGS, the user must explicitly give the number of
refinement steps that shall be computed.

To illustrate this mechanism, consider for example a pro-
gram working on an array A of two pointers, a pointer vari-
able P and two integer variables I and J: and made of three
simple threads defined as follows:

void tasklo { void task20 1 void task30 c
AI01 = &I; P = A C O] ; A[1] = &J;

3 > 3

Imagine that we are provided with a conservative field-in-
sensitive approximation HO of the memory graph as follows:

(&A: [- X , + X I , [8,8]) H (&I, [-E, +E], [4, 4]),
(&A, [-'x),+x], [8,8]) ++ (&Jj [-X:+m]: [4:4]),

(&P, [-X, + X I ; [4:4]) + (83: [-X: + X I : [4; 41)

assuming pointers and integers occupy four bytes in mem-
ory on the architecture considered. After one step of itera-
tion, the elements at indices 0 and 1 of array A are entirely
determined, however the value of P is computed from the
points-to information contained in Ho. Therefore we obtain
the following memory graph:

(&A, [O, 01, [S: 81) +. (&I, [O: O i ? j4: 41):
(&A; j4: 41, 81) - (&J, 10: 01,[4, 41))
(Qt-P, [O: 01, [4> 41) H (&I, [-W, +.XI, [4: 41))
(&P> [O, 01, [4; 41) +-+ (&J, [-a, +E], [4,4])

Note that the offset in the memory block &P has been solved
because the assignment P = A [O] writes its lefthand side at
the offset 0. After one more iteration step, the assignment
to P in task 2 can be precisely solved, since the memory
layout of A has been completely determined at the previous
iteration step. We finally obtain:

f (&A: [O! 01, [S,S]) y (&I: [O,O], [4! 41):
(&A, [A, 4]? 18: 81) ++ (&T, [O, 01, [4,4]),
(&?, [C, C], [2:4]) ii (&I, [C, 01: [4,4])

It now remains the problem of bootstrapping the itera-
tive process, i.e. obtaining the first approximation Ho. We
first used Steensgaazd's analysis [24] enhanced with Das'
one-level flow edges optimization [13]. However the result-
ing abstract heap was too coarse, and there were spurious
points-to relations introduced at that stage that remained
in all subsequent refinement steps. One source of impreci-
sion was due to the way message queues are allocated. The
unique malloc call that creates a queue is nested within
several function calls. Since in our memory model alloca-
tions can only be distinguished by the syntactic location of
the corresponding malloc, all message queues were merged,
resulting in an unrecoverable loss of precision. Adding an
option to CGS allowing to inline the corresponding functions
solved this problem. The idea is to treat isolated sources of
imprecision manually in this way rather than complicating
the pointer malysis in order t.o cover all special cases. The

drawback is that this kind of instrumentation can only be
done by a high-end user who perfectly knows the internals
of the analysis and how to cope with this kind of situation
(see also [3] for a discussion of this issue).

A sdbstLYtia! amount of the remaining spurisus points-to
relations was due to brutal unification operations in Steens-
gaard's analysis caused by pointers stored in global vari-
ables. The solution consisted of extending Das analysis in
order to be able to handle n-level flow edges without sac-
rificing efficiency. W-e believe that scalable versions of An-
dersen's analysis [2] could have been considered as well for
the bootstrap (181. We unfortunately did not have the time
to implement an inclusion-based analysis and compare the
results.

This ends the presentation of the abstract interpretation
framework implemented in CGS. We now have to present
the details of the abstract semantic equations.

3. ABSTRACT SEMANTICS
The symbolic and numerical parts of an abstract memory

reference are independent, which means that we can com-
pute these two pieces of information separately. We just
need to perform a reduction operation CT whenever there is
a context change (function call) or an interaction with the
abstract heap (memory read). The choice of performing a
Cartesian approximation for the abstract memory references
was mainly motivated by this simplifying assumption in the
abstract semantics.

W-e generate two separate sets of semantic equations for
each function in the program, one for the symbolic part in
the form of inclusion constraints between points-to sets: the
second as a system of numerical constraints between offset
and size variables. The resolution of these equations follows
the call graph by propagating call contexts made of points-to
sets and intervals. The symbolic and numerical systems as-
sociated to a function f are solved separately for all possible
call contexts of f (depending on whether context-sensitivity-~
is enabled for this function or not). Thc resolution of these
two systems of equations is interleaved, interactions occur-
ring whenever some information is retrieved from the en-
vironment, i.e. In this case we have
to combine the numerical and symbolic information in or-
der to query the memory graph H used at this step of the
resolution.

by a memory read.

3.1 Points-to Inclusion Constraints
Given a function f of the program? we associate a metava-

riable A, to each local variable p of f that may carry a
pointer (either a pointer variable itself or a compound vari-
able with pointer-valued fields). These metavariables repre-
sent the first component of an abstract memory reference,
i.e. a set of symbolic addresses. Following the model defined
in [26] we associate an anchor metavariable Ai to each loca-
tion l of a memory read operation or a function call that may
return a pointer. The metavariable At represents the set of
addresses returned by the read operation or the function call.
We similarly assign a special anchor metavariable Axof to
each formal parameter x of f that may carry a pointer. This
anchor denotes the poinss-to set of the argument passed to
the function and is used during interprocedural propagation.
Following Andersen's model [2] we use inclusion constraints
of the form A, 2 A, to relate the metavariables.

The generation of inclusion constraints is quite straight-

forward. For all assignments p = q: p = q + n (pointer
arithmetic) or p = (T *)q [type cast), we generate a con-
straint A, 2 A,. For ail memory read operation p = *q or
function call p = f (. . .> at a location ! in the program

operation read(-&, -4%) which is used during interprocedu-
ral propagarion for querying the abstract memory graph. A
memory write operation *p = q is not assigned an inclu-
sion constraint, it is simply assigned a semantic operation
write(A,, -&) which is used at the end of an analysis pass to
generate a new abstract heap, as described in the previous
section. Similarly a r e tu rn p statement is recorded sepa-
rately as return(.4,) and is used for the construction of the
transformers in the backward propagation phase described
in Sect. 3.3. We must also add the constraints corresponding
to the implicit binding relations between formal and actual
parameters as follows: -4, 2 Axafr for all formal parameter
x of f.

The resolution of these constraints differs from Ander-
senk algorithm [2! since read operations retrieve data from
the abstract memory graph H and require some information
about the offset at which the memory block is read. Our d-
gorithm consists of a local fixpoint iteration that computes
a set of symbclic addresses for each metab-ariable of f and
launches the resolution of numerical constraints on demand
whenever a memory read is encountered. For efficiency the
resolution algorithm implemented in CGS first computes the
directed acyclic graph of strongly connected components of
the dependexy g a p h of the system of inc!,sion constraints.
The iterations are then performed locally on each strongly
connected component following a weak topological ordering
of the metavariables 141.

--^ ,vc generate a constraint A, 2 -Ai; ai;d =e record a semaiitic

3.2 Numerical Constraints
Classically, when building an abstract interpretation of

numerical computations, the abstract seniaritic equations
follow the program structure [I". A. loo? statement in the
body of a function will appear as a recursive dependency in
the equations. Solving the system precisely usually requires
computing two fixpoint iterations, the first one with widen-
ing the second with narrowing. These calculations should
be performed on the whole program, i.e. hundreds of thou-
sands lines of C: a t each step of the heap refinement pro-
cess described in the previous section. In practice, we mea-
sured that at least five global iterations over the program are
needed to achieve a good level of precision. It was unredi-
tic to perform a full-strength fivpoint iteration at each step;
it would severely impair the efficiency of the analyzer. We
decided to first compute a summary of each function of the
program by using a relational numerical lattice a s described

i l s for the points-to inclusion constraints, given a function
f of the program, we associate two numerical metavariables
0, and S, to each local variable p of f that may carry a
pointer. The metavariables 0, and S, represent respectively
the offset and size ranges of the abstract memory reference
carried by the variable. We also associate a metavariable
I, to each integer valued local variable n. Recall that local
variables that are address-taken are globalized and never oc-
cur in an abstract environment. We also attach two anchor
metavariables Oe and Se to each location E of a memory
read/write operation or a function call that may return a
pointer. The metamriables Oe and SC represent respectively

in [ll].

the offset and size ranges of the absnact memoc reference
returned by the operation at that point. 11-e similarly at-
tach special anchors OxQf and SrGf (resp. I,,af) to each
point.er-valued (resp. integer-valued) formal parameter x of
f . .

We could also attach anchor rnetavariables I t to each lo-
cation E of a memory read operation or a function call rhat
returns an integer. CGS actually has command-line options
to generate such anchors. The representation of integer val-
ues in the abstract heap is identical to that of pointers, i.e.
it consists of mapping a memory location (a: 0, S} to an in-
terval [u,b]. Some extra care is required when reading an
integer from the heap in order to ensure that the offset of
the read operation is aligned with the offset of the integer
in the memory block: otherwise this would result into re-
turning a truncated value. Similarly we have to make sure
that the sues match, for example if we try to read a byte
from the location of an integer, otherwise the results would
be inconsistent. We address these issues in a very simple
way: whenever we encounter a read operation of an integer
of size s from the address a at the offset 0' and there is
a mapping (a: 0: S) H [a: b] in the abstract heap, we re-
turn the interval [u, bj if and only if 0 and S are singletons
and 0 = 0', S = [s: s]. We return [-x, +a] otherwise.
Surprisingly enough, the experiments showed no noticeable
gain in precision on the MPF family with this option of CGS
enabled.

Now we need to choose a relational abstract domain for
representing re!atioships between the nuolerical metamri-
ab le . Consider for example the following function which is
representative of the matrix computations performed in the
programs of the MPF family:

void equate (double *p. double *q, i n t n) {
int i;

for (i = 0; i < n; i++)
'phi = q k l ;

1

In the abstract syntax tree of this function the body of the
loop is represented by the three following statements:

a = p + i ;
b = q + i ;
c = *b;
*a = c;

The variables a: b and c are internal names generated by
the front-end. If we assume that the size of a double is 8
bytes, the exact loop invariant is given by

Sa = Spaequate

0 2 Oa - Opeequate 5 8 * Ikequate - 8
S b = S+quate i 0 5 Ob - Oqoequate 5 8 * InQequate - 8

where we have eliminated all metavariables associated to
local integer variables of the function, since they are just
used for storing the result of intermediate computations. It
immediately appears in this simple example that we need
general l inev inequalities in order to be precise. The only
abstract domain that is expressive enough for representing
this kind of invariants is the lattice of convex polyhedra [12].
Unfortunately, because of the complexity of the underlying

algorithms this lattice cannot be used for representing rela-
tionships between more than 20 variables in practice. The
functions in the codes of the MPF family can be quite large
and use many pointers simultaneously. We found that in
some fLinCtiGilS more than 30 poiiiteis were active iii the
body of a loop. Moreover: the abstract syntax tree rep-
resentation provided by the front-end introduces numerous
internal variables since all statements are broken down into
a 3-address format.

Some numerical relational lattices have been developed
recently that showed good promises of scalability [20: 211.
However they are not expressive enough for representing the
kind of linear inequalities in which we are interested. They
can only express linear inequalities between two variables
and the coefficients of these variables may only be 1 or -1.
Our solution consists of modifving the form of our numericd
constraints by introducing additional variables so that the
overall expressiveness of a system of numerical constraints
is kept constant: whereas the class of numerical relations
required to achieve this expressiveness is simpler.

hlore precisely, it appears that the main source of com-
plexity comes from the byte-based representation of offsets.
An array access p[i l is transformed into an arithmetic ex-
pression in which we multiply the index by the size of an
array element expressed in bytes. We extend the represen-
tation of a pointer p by attaching additional metavariables
bl(p), . . . ,6k(p) and u ~ (p) , ...? uk(p) for a fixed k. A pair
(&(p), u,(p)) represents an oifset expressed in a diEerent unit
than the byte. &(p) is the relative oEset and ~ ~ (p) is the
base. The actual offset in bytes denoted by this representa-
tion is given by the following formula:

I

We call the representazion PV.1., = (OP, (&(p), ul(p)), . . . ,
(6 { . (~) , ~ L L ~ (F))) a s l i d i ~ g window. We call Op.the base ofl.cet.
The associated sliding operation slide(Wk, 6, u) is defined as
follows:

The initial values of the sliding window for metavariables
associated to inputs of the function, i.e. the parameters and
the return values of a memory read or a function call, are
set to 0 except for the base offset and u k . The base offset is
the one associated to the metavariable and u k is the size of
the element pointed to by the variable as it appears in the
type inferred by the C front-end.

The sliding operation is used for handling a type cast op-
eration p = (T*)q. When analyzing this operation we first
retrieve the range of uk(q) from the current system of in-
equalities. If it is a singleton and it is equal to the size t
of T then Wp = W,, otherwise Wp = slide(W,,O,t). This
way u k always represents the size of the element currently
pointed-to by the variable. Whenever a pointer arithmetic
operation p = q + n is analyzed, the sliding window is
equated to Wq except for 6 k (p) for which the constraint
Sk(p) = 5k(q) + In is generated. Now if we analyze the
function equate with sliding windows of size k = 2 and the
abstract numerical domain of difference-bound matrices [20],
we obtain the following system of constraints for the loop

invariant:

sa = S p ~ e o u a r e

Oa = O p ~ e q u a t e

s, = SqqOeqcate

Ob = 0,c aequate

&(a) = uI(a) = 0
0 _< &(a) _< InjDequare - 1
w (a) = 8

6l(b) = ui(b) = 0
0 _< &(b) 5 lo~eqnzti? - I
u?(b) = 8

i
I

We can express the exact loop invariant with a less powerful
abstract lattice and more variables.

We chose the domain of difference-bound matrices [20]
(DBbIs for short) for expressing numerical constraints be-
tween variables. In this domain a constraint may only have
the form x - y 5 c where c is an integer. The fundamen-
tal operation on a DBM is the normalization that refines
constraints by repeated application of the following rule:

y - z 5 c‘
2 - y s c

x - z 5 c//
+ z - z 5 min(c + c‘, c”) I

Our choice was motivated by the observation that DBMs
have a sufficienc expressiveness for our purpose and by the
existence of an efficient quadratic algorithm devised by John-
son [6] for the normalization of sparse systems of constraints.
We assumed indeed that the systems of constraints would
be rather sparse, since it would be very unlikely to have all
variables in a function related at the same time. Our first im-
plementation used Floyd-Warshall’s algorithm [6] for com-
puting the normalization operation. The execution times
were catastrophic. A simple function independently manip-
ulating 20 pointer variables within a loop took more than
15 minutes to analyze. The execution time did not change
at all when we tried Johnson’s algorithm.

After a careful inspection of the results it appeared that
the system of inequalities was always dense, i.e. all variables
were related. Therefore the cubic worst c a e execution time
was always attained. The reason was to be found in the
way simple range constraints of the form n 5 x 5 b are
represented. A DBhI always contains a dummy zero variable
2 which has the value 0. Range constraints are translated
into constraints of the form a 5 z - 2 5 6. Therefore all
variables introduced in a DBM during the analysis become
implicitly related as soon as a range constraint is involved, in
other terms always. Thus completely independent variables
become related from the moment they receive a constant
(during initialization for example). This was a surprising
and disappointing result.

Our response to this situation was to explicitly pack com-
putationally dependent variables together, so that the ana-
lyzer works on a collection of smaller DBMs. A similar sit-
uation has been independently reported in [3]. In that work
the authors pack variables in small groups using a syntac-
tic criterion (all variables that appear within a same state-
ment). In ou r case, such a simple criterion does not work.
Pointer variables and loop counters can become related in
a nontrivial way via the sliding window representation. We
could not even use a dependency analysis because the ap-
plication of the s l ide operation depends on the range of uk
which can only be known during the fixpoint iteration. Any
dependency analysis performed beforehand would relate all
variables of the sliding windows which would still lead to a
high workload.

Our solution consisted of dynamically computing the de-
pendency relation between metavariables during the execu-

tion of the analysis. LVe s tan with all metavariables being
unrelated and we incrementally merge the DBMs whenever
tn-o of their xx-iables become related by an operation of the
program. We ako merge the associated zero variables. We
should also take care of implicit dependencies, Le. the in-
visible dependencies between variables which are modified
nithin a loop. If we do not consider these relations m-e lose
all relations between array indices and loop counters for ex-
ample. Therefore we first perform a rapid analysis of every
loop in order to check the variables that can be modified in
the body and we explicitly relate them before analyzing the
loop. We are then able to infer all invariants that can be
expressed with our abstraction. The function that took 15
minutes with the classic DBM domain could now be ana-
lyzed in about 10 seconds.

The domain of adaptive DBMs that we have constructed
in that way is an order of magnitude of complexity beyond
the original one. Fortunately it can be simply described
as an instance of a wfibered domain r27, 281. Cofibered
domains were initially introduced to construct complex dc-
mains for pointer analysis. They enable the m ~ p u l a t i o n
of dependent abstract domains, i.e. families of abstract dc-
mains indexed by the elements of a lattice. The domain of
adaptive DBXfs is exactly a cofibered domain: the indexing
lattice is the set of all partitionings of the set of variables
ordered by tiie refiiieiiient relation, a d the abstract domain
associated to one partitioning of the variables is the prod-
uct of the family of DBM domains based upon each set in

partition of correlated variables was five elements. It would
actually be an interesting experiment to use convex polyhe-
dra instead of DBMs in the cofibered domain, since five is a
tractable dimension for polyhedra? and compare the gain in
precision.

e L bile partitioning. We Eeas-aed that the average size of a

3.3 Interprocedural Propagation
.Function pointers are widely used in embedded programs

for efficiency reasons. There are plenty of them in codes of
the MPF family. We realized that a simple control-flow anal-
ysis based on Steensgaard’s algorithm [24] was sufficient to
solve exactly almost all computed calls. As a matter of fact,
recent experimental evaluations showed that simple pointer
analyses were sufficient to resolve computed calk in most
applications [19]. We perform this simple control-flow anal-
ysis at the bootstrap prior to launching the interprocedural
propagation phases. Having all computed calls resolved at
bootstrap makes the design of the interprocedural propaga-
tion algorithms tremendously simpler. In order to achieve
e5ciency we break down the interprocedural propagation
into two phases:

1. A backward propagation phase computes transformers
relating the parameters of a function with its return
value. These transformers are expressed using the do-
main of adaptive DBMs.

2. A forward propagation phase uses the transformers
computed in the previous phase to propagate abstract
memory references and ranges using the lattice of in-
t ervals .

The transformers computed during the backward propaga-
tion phase are used during the forward propagation to solve
.= !kction call nithout hznring to analyze +he hndy of the

called function. The re turn operations are iiseri at this
moment to propagate the constraints between the return
value and the arguments of the call. -4 coarse version of the
transformers are computed during the bootstrap in order to
enable the Srst foi$-ad piopagaiion phase. Usiiig a classi-
cal resolution scheme would have implied iterating over in-
terprocedural cycles induced by the h-c-wa>: dependencies
between a caller and a callee (function parameters/return
value), which is completely unrealistic for large programs.

The interprocedural propagation phase of CGS can be
conte-ut-sensitive. We implemented call-site sensitivity, i.e.
the invariants of a function are duplicated depending on the
syntactic call site. This level of context-sensitivity is suffi-
cient for the MPF family, since it handles the common situ-
ation where a pointer to some part of a big structure (typi-
cdly an array of double representing a vector or a matrix) is
transmitted to a mathematical function. Context sensitivity
is not applied uniformly, but only to functions which have
a pointer in their si,pature, since this is the only situation
where the analysis is able to distin-qish between different
call contexts. Context-sensitivity is extremely important for
precision. Arrays of double, which are the main data struc-
tures manipulated by the ILPF family codes. are usually
transmitted together with an integer parameter containing
the size of the array like in the equate example above. Since
the numericai caii contexts computed by CGS only are made
of intervals, they cannot express a relation between the size
of the array and the integer parameter. The only way to
capture this informatior, is to enumerzte all call contexts.
Hence, without context-sensitivity the tool would be unable
to perform any precise array bound checking on this large
family of functions.

4. ARCHITECTURE OF CGS
The algorithmic core of C Global Surveyor consists of

20,000 lines of C code. The tool is architected around three
main phases:

The build. This phase computes the points-to con-
straints and the numerical inequalities for each func-
tion in the program.

The boots t rap. This phase performs a flon-insens-
itive pointer anaiysis and a coarse context-independent
resolution of the numeric& inequalities, in order to
obtain a first approximation of all memory accesses.
These results are used to construct the call graph and
an initial approximation of the heap.

The solve. This phase consists of performing a for-
ward or backward interprocedural propagation of nu-
merical invariants. The results obtained at the end of
this phase are used to compute a new abstract heap
that refines the previous one. This phase should be re-
peated until a satisfactory level of precision has been
attained.

There are two additional satellite phases:

0 The initialization. This phase is performed at the
very beginning and collects general information about
the program, like the table of global variables, the table
nf fnnct.inns: etc.

T h e array-bound check (abc). This phase can be
execused at any time after the bootstrap and checks
the safety of all memory accesses from the results of
the analysis available at this moment. The precision
computed at the end of this phase is the main criterion
for deciding whether to continue refining the results or
stop at this point.

A very important decision in the initial design of a static
analyzer is the choice of the front-end. We chose the Edi-
son Design Group’s C/C++ front-end [15], a commercial
front-end which supports a large variety of C dialects. More-
over, the Green Hills’ compiler [17], which is widely used at
NASA especially for developing flight software, is based on
this front-end. This is a relevant factor when considering the
application of the tool to other types of programs developed
inside NASA.

CGS has been designed from the beginning with a dis-
tributed model of computation in mind. Therefore, we tried
to parallelize all phases for which this makes sense? i.e. the
build and the refinement, the nature of the algorithms used
in the bootstrap precluding any attempt of parallelization.
We chose the Parallei Virtual Machine (PVM) for imple-
menting the distribution layer [16]. A major problem con-
sisted of storing the artifacts of the analysis and trarisrnitting
them to the processes running on parallel. We decided to use
a relational database for both the storage and the commu-
nication between processes of the artifacts, the PVM com-
munication mechanism being merely used for sending com-
rnmds to processes. We chose the PostgreSQL [25] database
to work with CGS. The architecture of CGS is illustrated in
Fig. 1. Note that each phase launches a master PVM pro-
cess that in turn iaunches slave processes. Slave processes
operate on each C file of the program for the initialization.
the build and the array-bound check, whereas they operate
on functions in the solve phase. The bootstrap is the only
sequential phase.

It is riot surprising to say that the cost of communications
is the major limiting factor in designing a distributed ap-
plication. CGS follows the same communication pattern for
each job: all needed artifacts are retrieved from the database
at the beginning of the job, the results are stored in internal
memory until the job completes, then the results are writ-
ten into the database. Two important algorithmic issues
in desip-ning the distribution of jobs in CGS we the gran-
ularity (which jobs should be executed in parallel) and the
scheduling (in which order jobs should be executed).

The granularity of the build phase is the file: one PVM
process is launched for generating the semantic equations
of each source file. The scheduling of tasks in the build
follows a metric calculated during the initialization phase
which estimates the complexity of the fixpoint computation
for each function of the program. Complex files are executed
in priority in order to prevent the computation from being
biocked by a big job that has been scheduled at the end
of the worklist. The function-level granularity gave poor
results because the analysis time of a single function is so
short that the database becomes overwhelmed by numerous
concurrent accesses.

The gmnularity of the solve phase is the function: one
PVM process is launched for computing the invariant of each
function. The scheduling follows a weak topological order-
ing [4] given by the call graph in each way (forward/back-
ward): a function is added to the worklist whenever all its

Phase MPF (140 h>LOC)

init 232 I 187 113 78 67
--build I 1253 I 791 538 372 327

7

1 cpu 1 2 cpus 4 cpw 6 cpus 8 cpus

fwd solve 11 873 I 545 I 438 1 354 I 344 I

1

build
bootstrap
fwd solve

I , , I _.

1 bwd solve 11 897 I 529 I 413 I 343 I 331 I/ I

3678 1979 1480 1313 1155
711 663 780 777 686

1689 1075 914 860 771

fwd solve 1) 867 I 548 1 435 1 348 1 346
abc 1 1 274 I 211 I 374 I 697 I 880

Figure 2: Average analysis times (in seconds) per
phase for MPF

11 Phase DS1 (280 KLOC)
1 1) 1 cpu 1 2 cpus 1 4 cpus 1 6 cpus I 8 cpus 1
n init II 457 I 357 I 264 I 230 I 208 n

bwd solve I] 1811 I 1062 I 885 I 803 I 688
fwd solve 1 1 1666 I 1080 I 954 I 853 I 767

I ,
abc 11 537 I 484 413 I 824 I 1022

Figure 3: Average analysis times (in seconds) pe r
phase for DS1

predecesssrs have been acdyzed. We hzve &miled control on
the granularity and scheduling of the solve phase because of
it is entirely bound to the structure of the call graph. The
choice of the next function to schedule from the worklist
turned out to be critical. In our first experiments we used
simple heuristics that all led at some point to an almost se-
quential execution. Therefore, we should find a scheduling
strategy that tries to maximize the parallelism. We chose
a heuristic that consists of picking up the nest function to
schedule from the workiist that has the largest number of
calls to functions which are not in the worklist yet. This
heuristic is simple to compute and gives good results in
terms of distribution.

5. EXPERIMENTAL RESULTS
This section shows two types of performance measures for

CGS. First, we study the improvement of analysis times (for
each phase) in function of the number of available CPUs.
Note that all CPUs are identical (2.2 MHz with 1 GB of
memory). Second, we show how the precision evolves with
each solve phase. We distinguish between forward and back-
ward interprocedural propagation in the solve phases. All
experiments are conducted using two NASA mission soft-
ware systems, i.e., the flight software of the Mars Path
Finder missions (about 140 KLOC) and the Deep Space One
mission (about 280 KLOC). Both are written in C and follow
the same architectural and programming principles.

5.1 Analysis Time Nfeasures
Figure 2 and 3 show the results of the evolution of the av-

erage analysis times of each phase for hdPF and DS1 when
the number of available processors varies. We distinguish
between successive solve phases because the input data at
each iteration are different. Fig 4 gives a synthetic view of
these times on a graph plot. These number are averszes over

enables (nem phase) - daobze communications

PVhl communications

---..-*

phse launchiin~ _ - _ -

L I

2 3'7044 9216 I '75%
3 37044 9216 I 75%

Figure 1: Architecture of C Global Surveyor

solves

several measurements. We sometimes noticed a significant
variation between trials which can be imputed to the net-
work load at that moment: since we do not have a dedicated
cluster of machines for running our elcperiments. Note that
the ditferences between execution times for the bootstrap
phase are not relevant since this phase is purely sequential.
They have been reported for consktency.

The main conclusion is that contrarily to our expectations,
parallelizing the algorithms does not bring a substantial pay-
off. Four CPLs seem to be the threshold beyond which
the communication cost counterbalances the parallelization
benefits. The execution times consistently decrease for all
parallel phases except for the array-bound check. The expla-
nation is that each slave process for the array-bound check-
ing perform very simple computations over a laxge amount
of data (the numerical invariants associated to all memory
accesses in a C file), hence the execution time is dominated
by the 1/0 with the database. This phase should definitely
be made sequential like the bootstrap.

5.2 Precision Measures
First, we study the precision in terms of ABC checks.

All runs have been performed with context-sensitivity en-
abled. We count the number of ABC checks performed and
compute the percentage of these checks that are not warn-
ings (i.e. array-bound checks that could have been decided
by CGS): which provides us with a measure of the preci-
sion of the analysis. We display the results in Fig. 5 . Note
that we group the solve phases by pairs backward-forward,
since a backKa:d interproceduial propagation which com-
putes function transformers is of no use if there is no follow-
ing forward propagation phase that uses the transformers to
ma!yze function calls mnre precisely. Two passes seem t,o

DS1

11 total check I warnings 1 precision 1
/I 1 I I 37044 I 13248 I 64% I I

!

1
2
3

I - 4 - I

'72152 I 18875 I '74%
79% 72152 1 15103 1

72152 1 15103 i '79% i

Figure 5: Evolut ion of the precision after successive
pairs of backward-forward solve phases for MPF and
DS1

be the optimal configuration.
We also study the precision in terms of the number of

points-to relations in the abstract heap computed for the
program. As described in Sect. 2: each points-to relation
carries three numerical invariants representing the offsets
from the pointer and into the pointee, a s well as the size
of the memory block being pointed to. In Fig. 6 we dis-
play the evolution of the number of points-to relations after
successive pairs of backward-forward solve phases for MPF.
We also show the number of imprecise numerical invariants
(i.e. intervals which have one of their bounds equal to %m)
for the pointer/pointee/siae information respectively. The
last column represents the number of alias relations with an
imprecise numerical invaxiant for either the pointer, or the
pointee, or the size of the pointed memory block.

We not,ice that the niimher of points-to relations is con-

8000

v)
U
0
0
a,

c 6000

a 4000

Analysis times for MPF.

hi liid ..___

foward solve
backward solve

4000
3500

I foward solve ---.--E-
backward solve - e-----

Total time - - -0 - -

- I , , ABC .--*...

! ---...-
- - - a - - -.... --,- ...--

- . . .
0 . . .

-

:;,

. - . . - - - - - I Total time - - -0 - -

e - +- - - - ---
-. i 3 = - -

$ 3000

6 2500

solves .relations
1 306
2 306

U

; 2000 I

pointer pointee size any r
23 71 72 111
23 45 51 90

Analysis times for DSI .

init -
10000 % build x. ...

2000

0 -
1 2 3 4 5 6 7 8

CPUS

Figure 4: Average analysis t imes pe r phase and total t ime for MPF a n d DS1

6. RELATED WORK
There are two bodies of work that are directly related to

our work. The first one is the commercia1 tool PolySpace C

--
was useful and found quite a few bugs (mainly uninitial-
ized variables, out-of-bound array accesses, and overflows).
Unfortunately, it also produced a large amount of warnings
which deters developers.

The second body of work precisely addresses the prob-
lem of generating too many warnings. In [3) the authors
describe a static analyzer (also based on abstract interpre-

stant. The major improvement concerns the numerical in-
variants. -4lthough the points-to table may seem very small
compared to the size of the code, the points-to relations
recorded there are pervasively used throughout the code.
During the development of the tool we noticed that improv-
ing the precision of few critical entries in this table could
resolve thniisands of checks at once.

tation) that can analyze 75,000 lines of C code in a couple
of hours with a high level of precision (11 false alarms on
the code used For their experiment). Like for C,GS, the au-
thors specialized their algorithms for a family of software
with the following characterktics: f f i a q g h b d aiid staxic
variables. no recursive functions nor gotos, and simple data
structures. Furthermore, the authors mentioned than the
alias information is trivial in the code they analyze.

There are many analyses that can now scale to large pro-
g a m s 124; 2> 1: 13: E]? but none of those offer the level
of precision that can meet our requirements. For example,
none of those analyses can track offsets (in arrays or com-
plex data structures) with sufficient precision. Moreover, all
these analyses have been designed for sequential programs.
More precise analyses, such as those used in shape analysis
[23], exist but they fail to scale to luge programs. In fact, it
is e-xtremely difficult to design an analysis that scales with
high precision for any C program. However, as we demon-
strate here, high precision can be achieved on large programs
that share the same basic structure.

7. CONCLUSION
We have shown in this paper that the array bound check-

ing of large C programs can be performed with a high level
of precision (around 80%) in nearly the same time as compi-
lation. The key to achieve this result is the specialization of
the analysis towards a particular family of software. Most
importantly, this experience emphasizes the importance of
specializing the algorithms (the domain of adaptive DBMs)
and dismisses the use of general solutions (parallehation).
This approach has a major drawback however: developing a
specialized static analyzer is a huge effort that requires an
important expertise, which limits the impact of these tech-
niques in the software industry.

CGS is currently being applied to other kinds of NASA
software. It has been recently run with success on several
pieces of software operating in the Internationd Space S t -
tion. This is an interesting process that will give us informa-
tion on hos- a specialized analyzer behaves on programs that
do not belong to its primary scope. The first results show
noticeable variations in the precision. However, the scala-
bility of the tool remains remarkably intact and CGS is able
to analyze small proqams of 20 KLOC in fen- minutes.

8. RiSFERENCES
[l] A. Aiken and M. Fahndrich. Program analysis using

121

[31

141

mixed term and set constraints. In Proceedings of 4th
International Static Analyses Symposium (SAS'97),
1997.
L. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIICU:
University of Copenhagen, 1994.
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Mine: D. Monniaus: and X. Rival.
A static analyzer for large safety-critical software. In
Proceedings of the A C M S I G P L A N 2003 Conference
on Programming Language Design and
Implementation (PLDI'O3)> pages 196-207, San Diego;
California, USA, June 7-14 2003. ACM Press.
F. Bourdoncle. Efficient chaotic iteration strategies
with widenings. In Proceedings of the International
C'onfererxy on. Fnrm,n? A[dh.od.s in. Prngram.ming and

their Applications, volume 735 of Lecture Notes in
Computer Science, pages 12S-111. Springer Verlag:
1993.

j3j G. Brat and R. Klemm. Static analysis of the mars
exploration rover Eight. software. in Proceedings of the
First International Space Mission Challenges for
Information Technology. pages 321-326, 2003.

@] T. Cormen) C. Leiserson, and R. Rivest. Introduction
to Algorithms. The MIT Press, 1990.

171 P. Cousot and R. Cousot. -4bstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of kpoints . In
Proceedings of the 4th Symposium o n Principles of
Programming Languages, pages 238-353, 1977.

181 P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In Conference Record of
the Sixth Annual A C M SIGPLAN-SIGACT
Symposium o n Principles of Progrummzng Languages,
pages 269-282> San Antonio, Texas, 1979. ACR/I Press,
New York, r U i .

is] P. Cousot and R. Cousot. Abstract interpretation and
application to logic prograrns. Journal of Logic
Programming, 13(2-3) : 103-1'79 ~ 1993.

frameworks. Journal of Logic and Computation,
[lo] P. Cousot and R. Cousot. Abstract interpretation

2 (4) : 51 1-547, 1992.
ill] P. Cousot and R. Cousot. Modular static program

analysis, invited paper. In R. Horspool. editor,
Proceedings of the Eleventh International Conference
on Compiler Construction (CC 2002): pages 159-178:
Grenoble, France, April 6-14 2002. L,NCS 2304,
Springer, Berlin.
P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
Conference Record of the Fifth Annual A C M
SIGPLrlN-SIGA4CT Symposium on Principles of
Programming Languages, pages 84-97, Tucson,
Arizona, 1978. ACXI Press, New York. NY.
M. Das. Unification-based pointer analysis with
directional assignments. In Pmceedings of the AChf
SIGPLAiV '00 conference o n Programming language
design and implementation, pages 3.5-46. ACM Press,
2000.
M. Das: B. Liblit, M. Fiihndrich, and J. Rehof.
Estimating the impact of scalable pointer analysis on
optimization. In Proceedings of 8th International
Static Analyses Symposium (S.4S901), pages 260-278,
2001.
Edison Design Group. h t t p : //m. edg. corn.
A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. P v m 3 User's Guide
And Reference Manual. MIT Press, 1994.
Green Hills Software. h t t p : //m . ghs . corn.
N. Heintze and 0. Tardieu. Ultra-fast aliasing analysis
using CLA: A million lines of c code in a second. In
SIGPLAN Conference o n Programming Language
Design and Implementation, pages 254-263, 2001.
A. Milanova, A4. Rountev, and B. G. Ryder. Precise
and efficient call graph construction for c programs
with function pointers. Journal of Automated Software
Engineering, 2004.

[20] A. Mink. A new numerical abstract domain based on
difference-bound matrices. In Proceedings of the 2nd
Symposium P-4DO '2001, volume LNCS 2053, pages
153-172, 2001.

[21] A. Mink. 'The octagon abstract domain. In AST 2 O O i
in WCRE 2001: IEEE, pages 310-319. IEEE CS
Press, October 2001.

[22] PolySpace Technologies. h t t p : //m .polyspace. corn.
[23! M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape

analysis using 3-valued logic. In Proceedings of
Symposiwm on Principles of Programming Languages,
1999.

[%] B. Steensgaard. Points-to analysis in almost linear
time. In Proceedings of theACM Conference on
Principles of Progamming Languages: 1996.

[25] The PostgreSQL Global Development Group.
http : //WJW .postgresql. org.

[26] A. Venet. A scalable nonuniform pointer analysis for
embedded programs. Submitted to publication.

[27] A. Venet. Abstract cofibered domains: Application to
the alias analysis of untyped programs. In Proceedings
of SAS'96) volume 1145 of Lecture Notes in Computer
Science: pages 266-382. Springer Verlag, 1996.

[?SI .4. Venet. Automatic analysis of pointer aliasing for
untyped programs. Sczence of Computer
Programming, 35(2):223-248, 1999.

[29] A. Venet. Nonuniform alias analysis of recursive data
structures and arrays. In Proceedings of the 9th
International Symposium on Static Analysis SAS'U2,
volume 2477 of Lecture Notes in Computer Science,
pages 36-51. Springer, 2002.

